The Naming Problem in Power System Interoperability
Consider two applications that previously have had no automated communication between them – i.e. no interoperation. Assume that both of these applications have something to do with generators. Both apps therefore have some “modeling” function that allows users to add new generators when new generators go on-line. And when this is done in both apps, the modelers in those apps assign names according to their own naming conventions, which typically means that the names are different.

The objective is to establish some kind of interoperation. Perhaps app A needs to send results to app B from time to time. But if A sends a message that says “generator Fred is off line”, how does app B understand that this is referring to the generator that it calls something different, like “Freddie”?
The solution to this problem that has been implemented repeatedly over the last two decades is very simple. A table of correspondences is created between applications A and B. This table is initialized (usually by manual entry) with entries such as the Fred-Freddie pair. The result of this is that there are now three modeling databases that must be maintained – the original two apps and the table of correspondence. 
Sometimes app A and app B don’t take an identical view of what a generator is. For example, app A might view a combined cycle unit as one generator, while application B views it as two because it is looks at generation from the point of view of the electrical outputs into the grid, rather than the unit as a whole. In this case, the solution approach is the same – but the table of correspondence is a little more complicated to translate both name and modeling information.
Over time, these relatively simple individual solutions to interoperability have multiplied into a data maintenance disaster. In real IT operations, there might be 25 different apps representing generators with many of the 300 possible point-to-point connections filled in. The number of separate model maintenance steps required to put a new generator on-line across their IT operation has become quite large and the sum of all such operations for all kinds of objects about which information is exchanged in most shops has grown to be one of the major cost issues and one of the major potential sources for errors. The problem grows further when the exchange of information is between organizations because the problem always involves different people and more complex communications between the people to get model changes coordinated and timed according to the needs of the business process involved.
Temporal naming – schedule new names for objects

What everybody wants in order to reduce cost/risk is that there is one point of origin for each item of information, and this updates all systems. This does not mean that one person enters all information – just that each piece of data is entered once – so one party might enter a generator with its name, and then another party that wanted a different name might be notified and requested to add their name.

The solution to this problem starts with a business process definition that says a) who is going to provide the originating definition of a given object and b) who is going to add information. In other words, you have to make an agreement among the affected parties (who were all carrying out maintenance operations) and decide who the one point of origin is for any given object – and who else may need to get notified.
If the process is entirely internal, these processes usually exist in the form of maintenance procedures. But where multiple corporations are involved, and where industry standards are desired, it is no small task to reach the necessary business agreements. It is a necessary starting condition, though – you cannot proceed to solution of any individual problem without defining this part. 
Implementing the solution on an interoperability platform once this is done involves some interesting sub-problems:

· How to create and store the tables of correspondence.
· How to facilitate debugging of incorrect assignments – e.g. how do you recover from a situation where two parties created separate representations for the same object.
· Definition of messaging that informs all parties to the interoperation about new object definitions, so that they can all do what they need to do in order to stay in synch.

Surprisingly, a globally unique identifier for an object is not actually an absolute requirement – the hard requirement is simply for tables of correspondence between local identification conventions. However, globally unique identifiers are commonly proposed as a solution mechanism. The advantages of a GUID are:
· Each application needs to convert from its internal conventions to the GUID, rather than create pair-wise tables for each point to point connection.

· A registry database of each object, together with the names that are assigned from each environment, is very handy in helping to debug problems. (And such a registry by default has a unique id as the primary key for objects that are registered.)

Nor is it a requirement that all GUIDs (if they are used) observe the same conventions – it is convenient and easier to understand, but not necessary. The type/format of identifier is a design choice in each business situation, as defined by who asks for an identifier, who provides the identifier, and who maintains the registry, what sort of connection environment exists, what sort of performance is required, what scope of participation is required, etc. Different situations may argue for different kinds of formats.
